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Abstract 
 
An adaptive feedback linearization technique combined with the neural network is addressed to control uncertain 

nonlinear systems. The neural network-based adaptive control theory has been widely studied. However, the stability 
analysis of the closed-loop system with the neural network is rather complicated and difficult to understand, and some-
times unnecessary assumptions are involved. As a result, unnecessary assumptions for stability analysis are avoided by 
using the neural network with input normalization technique. The ultimate boundedness of the tracking error is simply 
proved by the Lyapunov stability theory. A new simple update law as an adaptive nonlinear control is derived by the 
simplification of the input normalized neural network assuming the variation of the uncertain term is sufficiently small. 
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1. Introduction 

As an enabling nonlinear control theory, the feed-
back linearization technique has been applied to a 
wide variety of systems. This method is called model 
inversion due to the basic idea of nonlinearity cancel-
lation in the inverse model of the system. The control-
ler is limited to the full knowledge of the nonlinear 
system model, and applicable only when the system is 
feedback linearizable. If the exact model is not known 
or only uncertain system information is available, the 
boundedness of the error and the stability of the 
closed loop system are not guaranteed. In this paper, 
the feedback linearization technique combined with 
an adaptive control term is proposed for the uncertain 
systems. 

One potential approach to handle the model error 
uncertainty, high nonlinearity, or actuator uncertainty 
is adaptive control. Adaptive control parameterizes 
the uncertainty in terms of certain unknown parame-
ters and tries to take advantage of the feedback strat-
egy to learn these parameters during the operation of 

the system. If a system possesses many unknown 
parameters to be estimated, the adaptive control for 
real-time applications may not be feasible because of 
the computational burden involved. However, generic 
adaptive controls are now becoming enabling tech-
nologies due to the rapid progress in microprocessor 
performance. Successful advance in adaptive control 
has been achieved during the last several decades in 
various applications such as robotics, aircraft control, 
and estimation problems.  

Since the neural network was demonstrated as a 
universal smooth function approximator [1], exten-
sive study has been conducted for different applica-
tions, especially pattern recognition, identification, 
estimation, and control of dynamic systems. [2-6] 
One of the crucial properties of the neural network is 
the weights to be optimized with certain bounded 
values through appropriate learning rules. Most adap-
tive control methods have been restricted to the sys-
tems linear in the unknown parameters, and experi-
enced limitation from the difficulty of parameter for-
mulations. However, learning-based controls with 
neural network are regarded as alternatives to adap-
tive control. Uncertain nonlinear terms of the systems 
can be modeled in terms of the neural network. In this 
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case, the weights of the neural network are treated as 
the additional unknown parameters to be estimated. 

Lewis et al. applied adaptive control using neural 
network for a general serial-link rigid robot arm. [6] 
The structure of the neural network controller is de-
rived by the filtered error approach. Moreover, Lewis 
took neural network for adaptive observer design, [7] 
and developed a neural network controller for the 
robust backstepping control of robotic systems in 
both continuous and discrete-time domains. [8] Calise 
et al. have worked extensively on the control and 
estimation of aircraft and helicopters using neural 
network. [9-13] Adaptive output feedback control 
using a high-gain observer and radial basis function 
neural network was proposed for nonlinear systems 
represented by input-output models. [14, 15] Also, a 
nonlinear adaptive flight control system was designed 
by backstepping and neural network controller. [16] 

In the previous works, stability analysis of the 
closed-loop system using the neural network is rather 
involved in mathematical development. Also, many 
assumptions and conditions are usually required to 
prove the ultimate boundedness of the tracking error. 
As one of the assumptions, the boundedness of refer-
ence signals is mandatory to prove the stability. The 
large reference signals tend to cause large bounded-
ness of the tracking error because the assumption is 
closely connected to the boundedness of the tracking 
error. In this paper, the boundedness assumption is 
relaxed by using the input normalized neural network. 
The neural network is configured by replacing the 
input vector with a normalized input vector. The im-
portance of the input data normalization is empha-
sized because of various benefits for function ap-
proximation. [17] The high order terms of the activa-
tion functions-sigmoidal, RBF, tanh functions - based 
on the input normalized neural network can be shown 
to be simply bounded. It is a result different from that 
of the previous studies. Consequently, this property 
leads to a simple condition for the tracking error to be 
ultimately bounded without the information on the 
trajectory bound. Furthermore, a new adaptive law is 
derived by the simplification of the neural network 
and approximation of the normalized input vector to 
zero on the condition that the variation of the uncer-
tain terms is sufficiently small. The new adaptive 
control law provides a possibility that the uncertain 
error could be eliminated within a small error bound.  

This paper is organized into several sections. First, 
the background of the study of feedback linearization 

and problem formulation is presented. Then, a review 
of the neural network and definition of the input nor-
malization are presented with the neural network 
applied to the adaptive control law design for uncer-
tain systems. In the next section, the stability analysis 
and a new adaptive control theorem are presented. 
Finally, the proposed control law is applied to an 
example system for demonstration purpose. 
 

2. Background 
2.1 Feedback linearization 

Consider a single-input-single-output nonlinear 
system 

( ) ( )
( )

x F x G x u
y H x
= +
=
�

  (1) 

where ,F G and H  are sufficiently smooth func-
tions in a domain ND R⊂ and ,u y R∈  are the sys-
tem input and output, respectively. Different nonlin-
ear control techniques for the problem formulated in 
Eq. (1) have been pursued over the well-known ,F G . 
However, it is not easy to acquire exact knowledge on 

,F G  for complex plants. For practical problems, 
,f g  are the best estimates for the uncertain ,F G , 

respectively. Thus, the system is reconfigured as 

( ) ( )
( )

x f x g x u
y h x
= +
=
�

  (2) 

In this paper, the feedback linearization approach is 
applied to control the system. The derivative y�  of 
the system in Eq. (2) can be expressed in the form 

[ ( ) ( ) ] ( ) ( )f g
hy f x g x u L h x L h x u
x
∂= + = +
∂

�
  (3) 

where 

( ) ( ), ( ) ( )f g
h hL h x f x L h x g x
x x
∂ ∂= =
∂ ∂

  (4) 

represents Lie derivatives of h  with respect to ,f g . 
If the input-output relationship appears in ( )y ρ  with 
a nonzero coefficient such as  

( ) ( ) ( 1)( ) ( )f g fy L h x L L h x uρ ρ ρ −= +   (5) 

Then ρ  is defined as a relative degree of the sys-
tem. A feedback linearized system can be trans-
formed by change of variables as follows: 

0 ( , )fη η ξ=�   (6) 

( )[ ( )]c cA B x u xξ ξ γ α= + −�   (7) 
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cy C ξ=   (8) 

where ( 1)[ , , , ] , Ny y y R Rρ ρ ρξ η− −= ∈ ∈� … , 

( 1)( ) ( )g fx L L h xργ −=  and 
( )

( )

( )
( )

( )
f

g f

L h x
x

L L h x

ρ

ρα = −   (9) 

Eq. (6) describes internal dynamics and ( , ,c cA B  
)cC  is in a canonical form. 

0 1 0 0 1
0 0 0

, ,
1 0

0 0 0 1 0

T

c c cA B C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

"
% # #

# # % #
"

  (10) 

Without loss of generality, we assume that 
0 (0,0) 0f = . To design a state feedback control law, a 

reference signal should be defined so that the output 
y  asymptotically tracks the reference signal ( )r t . It 

is also assumed that the reference signal ( ( , ,r r�  
( ), )r ρ… ) is available on-line. For convenience, let us 

define two vectors as 

( 1) ( 1) ( 1)

,
r y r

R E R
r y rρ ρ ρ

ξ
− − −

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

# #   (11) 

where R  is the reference signal vector and E corre-
sponds to an error vector. The error dynamics is de-
rived through the change of variables from Eq. (7) 
such that 

{ }( )( )[ ( )]c cE A E B x u x r ργ α= + − −�   (12) 

The nonlinear feedback control law is developed in 
the form 

( )( ) ( )[ ]u x x v r ρα β= + +   (13) 

where ( ) 1/ ( )x xβ γ=  and v  is a pseudo control 
input. 

 
2.2 Problem formulation 

The tracking control law derived so far is based on 
the system dynamics in Eq. (2). However, the system 
to be controlled ultimately is a nonlinear system in Eq. 
(1). The difference between Eq. (1) and Eq. (2) in-
duced from the model uncertainty amounts to ( )∆ ⋅  
through feedback linearization. In other words, the 
reference model tracking error dynamics based on the 
system in Eq. (1) becomes 

{ }( )( )[ ( )] ( , ( ))c cE A E B x u x r x u xργ α= + − − + ∆�  (14) 

Additional control action is redefined to control the 
uncertain terms such that 

( )( ) ( )[ ]adu x x v r vρα β= + + −   (15) 

where adv  represents an adaptive control term. 
 
Assumption 1 : 
The error dynamics in Eq. (14) is a well defined 

system with a relative degree ρ . The internal dy-
namics in Eq. (6) is Lipschitz with respect to ξ  and 
globally exponentially stable so that there exists a 
Lyapunov function ( )Vη η  in some neighborhood of 

0η =  given by [18] 
2 2

1 22 2
( )c V cηη η η≤ ≤   (16) 

2
0 2 2
( ,0)

V
f cη η η

η
∂

≤ −
∂

  (17) 

and 

2
4 2

2

V
cη η

η
∂

≤
∂

  (18) 

where 1 2 3, ,c c c  and 4c  are positive constants. 
The primary goal of this study is to construct an 

adaptive control law to compensate the model uncer-
tainty so that the output tracks a reference trajectory 
with bounded error. The baseline control law is con-
structed by the feedback linearization of the system in 
Eq. (2). A neural network is incorporated into the 
baseline control law to compensate for the uncertain 
terms. 

 
2.3 Input normalized neural networks (INNN) 

Since the neural network was demonstrated as a 
universal smooth function approximator, there has 
been a wide range of applications, especially pattern 
recognition, identification, estimation and control of 
dynamic systems. Recent advance in the neural net-
work has allowed a series of new technologies. There 
are several types of architecture for the neural net-
work to solve different problems. One promising type 
involves input normalized neural networks (INNN) 
which are configured by replacing the input vector of 
the neural network with a normalized input vector. 

An adequate normalization of the input vector is a 
linear scale conversion that assigns the same absolute 
value to the corresponding relative variation. The 
effect of input data pre-treatment prior to the neural 
network training is demonstrated by systematic analy- 
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Fig. 1. A three-layered neural network architecture. 

 
sis. The importance of the input data normalization is 
emphasized due to several advantages for function 
approximation. [17] One advantage is that the estima-
tion error can be reduced. Another merit lies in the 
calculation time reduced in the order of magnitude for 
the training process. This approach provides also an 
improved capability in discriminating high-risk soft-
ware. [19] From control theory viewpoint, the INNN 
provides several advantages as well as the advantage 
of the neural network itself as it will be discussed 
later.  

A general three-layered neural network architecture 
illustrated in Fig.1 consists of a large number of paral-
lel interconnections of neural processors. The three-
layered neural network consists of an output vector 
( ly R∈ ) about the input vector ( nx R∈ ) as follows: 

1 1

m n

i ij ik k vj wi
j k

y w v x b bϑ
= =

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∑ ∑   (19) 

where ijw R∈ is the interconnection weight between 
the hidden and output layers, ϑ denotes an activation 
function. In addition, jkv R∈  is the interconnection 
weight between the input and hidden layers while vib  
and wib  are bias terms. The neural network in this 
architecture is generally known as the universal ap-
proximator for continuous nonlinear functions. 

The output function can be expressed in a simpler 
form as 

( )T Ty W V xσ=   (20) 

where σ  denotes an activation function vector. The 
bias terms vib , wib  are absorbed into V  and W , 
respectively, by redefining the input vector of the 
neural network. 

[ ]1 Txχ =   (21) 

For the simple form of the neural network, the ele-
ments of the two weight matrices are defined as 

1 1

11 1 11 1

1 1

,

v vm w wl

m l

n nm m ml

b b b b
v v w w

V W

v v w w

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

" "
" "

# % # # % #
" "

  (22) 

where ( 1) ( 1),n m m lV R W R+ × + ×∈ ∈ . The activation func-
tion vector is described as 

[ ]1( ) 1 ( ) ( ) T
mσ υ ϑ υ ϑ υ= "   (23) 

where iυ  denotes the i-th element of the vector 
T mV Rχ ∈ . 
The INNN can be easily implemented by defining 

the normalized input vector as follows: 

z s χ
χ

=   (24) 

where s is a positive scaling parameter. Thus, the 2-
norm of the normalized input vector simply satisfies 

z s=   (25) 

 
Remark. 1 
The ideal weight matrices of the neural network are 

unknown and possibly non-unique, which implies that 
the weights can be optimized to satisfy desired design 
objectives. This is possible by judicious selection of 
each learning rate of the weights and initial values. 

 
Remark. 2 
An input normalized neural network possesses 

some useful advantages such that the estimation error, 
the computational time for the training process, and 
other risks can be reduced. 

 
Assumption 2.  
There are ultimately converged ideal weights (con-

stant matrices) at the end of the learning process and 
the following bounds hold 

,V V W W≤ ≤   (26) 

where ,V W are the upper bounds of the unknown 
weight norms. 

A suitable choice of neurons is needed to represent 
a nonlinear function with converged constant weights. 
That is, careful consideration for the significance of 
the nonlinearity is required to satisfy both the ap-
proximation property and assumption 2. 
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3. Adaptive controller design 

The reference model tracking error dynamics in Eq. 
(14) is expressed as 

{ }( )( )[ ( )] ( , ( ))c cE A E B x u x r x u xργ α= + − − + ∆�  (27) 

and the pseudo control input is defined as adv KE= − , 
where TK Rρ∈  is a feedback gain matrix. Inserting 
the control input in Eq. (15) into Eq. (27), the error 
dynamics are modified into 

{ }( , ( ))c c adE A E B v x u x= + − + ∆�   (28) 

where c cA A B K= − and the gain matrix is selected 
so that A  becomes Hurwitz. For this, there exists a 
positive definite matrix satisfying 

TA P PA Q+ = −   (29) 

The Lyapunov equation guarantees a unique posi-
tive definite solution. The INNN is applied to com-
pensate for the model uncertainty so that the model 
uncertainty of the system can be replaced by 

( , ( )) ( )T Tx u x W V zσ ε∆ = +   (30) 

where ε  represents a function reconstruction error. 
In general, given a constant real number 0,ε >  

( , ( ))x u x∆  is within ε  range of the neural network. 
It was remarked in the previous section that the neural 
network has constant weight matrices at the end of 
the learning process. From this statement, the repre-
sentation in Eq. (30) holds with ε ε< . 

The adaptive control term is required to satisfy 

ˆ ˆ( )T T
adv W V zσ=   (31) 

where ˆ ˆ,W V  are on-line estimates of , 9W V , respec-
tively, such that 

ˆ

ˆ
V V V

W W W

= −

= −

�

�
  (32) 

The estimated weights are updated by the update 
rules: 

ˆ ˆ ˆ ˆ( )( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

T T T
c

T T T T
c

V LzW V z E PB kLV

W M E PB V z V z V z kLW

σ

σ σ

′= −

⎡ ⎤′= − −⎣ ⎦

�

�  (33) 

Note that k  is a design parameter, ( ,L M ) are 
positive definite learning rate matrices, and ( )σ υ′  
denotes a Jacobian matrix containing derivatives of 

the activation vector such that 

1

1

0 0
( ) 0

( ) ,

( )0

m

m

m

v
R

v

ϑ υ

σ υ υ

ϑ υ

⎡ ⎤
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂

′ = ∈⎢ ⎥
⎢ ⎥
⎢ ⎥∂
⎢ ⎥

∂⎢ ⎥⎣ ⎦

"

"

# % #

"

  (34) 

The Taylor series expansion of ( )TV zσ for a given 
TV z  

yields 
2ˆ ˆ( ) ( ) ( ) ( )T T T T TV z V z V z V z O V zσ σ σ ′= + +� �   (35) 

where 2( )TO V z�  denotes terms of order two. 
 
Lemma.1  
For sigmoid, RBF, and tanh functions as the activa-

tion functions of the INNN, the higher order terms in 
the Taylor series are bounded by 

2
5 6( )TO V z c c s V≤ +� �   (36) 

where 5 6,c c are positive constants. 
 
PROOF : From Eq. (35) and some norm inequality 

in conjunction with the fact that the activation func-
tion and associated derivatives are bounded by con-
stants, the higher order terms are also bounded such 
that  

5 6

ˆ ˆ( ) ( ) ( ) ( )T T T T TV z V z V z V z V z

c c V z

σ σ σ σ⎡ ⎤ ′= − −⎣ ⎦

≤ +

�

�
  (37) 

Finally, Lemma.1 is derived by substituting the 
INNN property in Eq. (25) into Eq. (37). 

The following inequality provides useful properties 
for the stability analysis 

1

2
2 3

ˆ( )

( )

T T T

T T

W V z V z d s W

W O V z d d V

σ ′ ≤

≤ +

� �

� �
  (38) 

where 1 2,d d and 3d are computable positive con-
stants. The inequalities are readily derived from 
Lemma.1 and Eq. (26). For the stability analysis, Eq. 
(35) is substituted into Eq. (30). Consequently, the 
difference between the on-line output of the neural 
network and the model uncertainty satisfies the fol-
lowing relationship: 

ˆ ˆ( , ( )) ( ) ( )
ˆ ˆ ˆ( ) ( )

ˆ ˆ( )

T T T T
ad

T T T T

T T T

v x u x W V z W V z

W V z V z V z

W V z V z

σ σ ε

σ σ

σ δ

− + ∆ = − + +

⎡ ⎤′= −⎣ ⎦
′+ +

�

�

 (39) 
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where 
2ˆ( ) ( )T T T T TW V z V z W O V zδ σ ε′= + +� �  

From Eq. (38), one can show that δ  is also 
bounded by 

4 1 3d d s W d s Vδ ≤ + +� �   (40) 

where 4 2d d ε= +  is additional positive constant. 
 

4. Stability analysis 

Stability of the error dynamics combined with the 
INNN is discussed in this section. The stability analy-
sis is based on the Lyapunov direct method. The full 
states including the weights of the INNN should be 
used because of the on-line function approximation 
rules. 

 
Theorem. 1 First, let the assumptions 1 and 2 hold. 

Then, the control input of the error dynamics satisfies 
( ) ˆ ˆ( ) ( )[ ( )]T Tu x x v r W V zρα β σ= + + −   (41) 

The update rules of the INNN are described in Eq. 
(33), and a condition satisfies the following 
inequality: 

2 2
min 0( )Q k a sλ >   (42) 

where 0a  is a positive constant. The tracking error 
and the weight error of the INNN are ultimately 
bounded. 

 
PROOF: Let us examine the following candidate 

Lyapunov function for the system in Eq. (27) 

( ) ( )1 11 1 1
2 2 2

T T T
LV E PE tr W M W tr V L V− −= + +� � � �  (43) 

The time derivative of LV  by inserting Eq. (27) 
produces 

1 1

( ) ( ( , ( ))

( ) ( )

T T T
L c ad

T T

V E A P PA E E PB v x u x

tr W M W tr V L V− −

= + + − + ∆

+ +

�
� �� � � �

 (44) 

Here the difference between the on-line output of 
the neural network and model uncertainty is replaced 
with Eq. (39). Then by making use of the neural net-
work update rules in Eq. (33), the time derivative of 

LV  becomes 
 

{ }
( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

T T
L

T T T T T T T T
c

V E A P PA E

E PB W V z V z V z W V z V zσ σ σ δ

= +

⎡ ⎤′ ′+ − + +⎣ ⎦

�

� �   

( )
( )

ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( )

T T T T T T
c

T T T T T
c

tr W E PB V z V z V z kW W

tr V zW V z E PB kV V

σ σ

σ

⎡ ⎤′+ − − +⎣ ⎦

′+ − +

� �

� �
 (45) 

Since A  is Hurwitz, there exists a symmetric 
positive definite solution, and from the trace equality 
property such as 

( ) ( )T T Tx y tr x y tr xy= =   (46) 

one can obtain the time derivative of LV  written as 

ˆ ˆ( )T T T T
L cV E QE E PB tr kW W kV Vδ= − + + +� � �   (47) 

If we use Eqs. (32) and (40), then 
2

min 4 1 3( ) ( )

ˆ ˆ( )

T
L c

T T

V Q E E PB d d s W d s V

tr kW W kV V

λ≤ − + + +

+ +

� � �

� �
 (48) 

can be derived. Applying the upper bounds of the 
weight matrices from Eq (26), the time derivative of 

LV  can be rewritten as 
2

min

max 1 3

2 2

max 4

( )

( )( )

( )

( )

LV Q E

P d s W d s V E

k W V

P d E kW W kV V

λ

λ

λ

≤ −

+ +

− +

+ + +

�

� �

� �

� �

  (49) 

For convenience, some notations are introduced as 

0 max 1 max 3

1 max 4

2 max ( ) ( )

max ( )

a P d P d

a P d kW kV

λ λ

λ

⎡ ⎤= ⎣ ⎦
⎡ ⎤= ⎣ ⎦

  (50) 

and 
T

Z V W⎡ ⎤= ⎣ ⎦
� � �   (51) 

where 1a  is a positive constant. From the norm 
property such that 

1 2n nc x x c xα β α≤ ≤   (52) 

Eq. (49) results in 

22
min 0

1

min 0

0

1

( ) 2

( )

( )

( )

L

T

V Q E a s E Z k Z

a Z E

E EQ a s
a s kZ Z

a Z E

λ

λ

≤ − + −

+ +

⎡ ⎤ ⎡ ⎤−⎡ ⎤
= − ⎢ ⎥ ⎢ ⎥⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

+ +

� � �

�

� �

�

 (53) 

Once again, we redefine a matrix and a vector as 
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min 0

0

( )
,L

EQ a s
Q L

a s k Z
λ ⎡ ⎤−⎡ ⎤

= = ⎢ ⎥⎢ ⎥− ⎢ ⎥⎣ ⎦ ⎣ ⎦

�
�  

where the matrix ( LQ ) can be a symmetric positive 
definite matrix and satisfies the condition in 

Eq. (42) by a proper selection of ,k s  and Q . 
Consequently, Eq. (53) is simplified into 

2

min 1( )LV Q L a Lλ≤ − +� � �   (54) 

and the following condition 

1

min ( )L

aL
Qλ

∀ >�   (55) 

renders 0LV <�  outside a compact set. According to 
the Lyapunov stability theory, this result verifies the 
uniform ultimate boundedness of L� . 

 
Remark 3 
The control theories based upon neural network 

studied in the past generally required boundedness of 
the desired trajectory. [5, 9, 13, 16] The assumption is 
also directly related to the tracking error boundedness 
so that larger boundedness of the desired trajectory 
produces larger tracking and weight errors. In practi-
cal applications, the trajectory and its derivatives up 
to ( ) ( )r tρ  should be bounded for all 0t ≥ . However, 
this assumption may be unnecessary for controller 
design and stability analysis. In this study, the seem-
ingly unnecessary assumption is avoided by employ-
ing the INNN technique.  

 
Remark 4 
The ultimate boundedness is derived from the can-

didate Lyapunov function in Eq. (43). The condition 
in Eq. (42) is also necessary to make a positive defi-
nite matrix in the stability analysis. The Lyapunov 
stability theory satisfies only the sufficient condition 
so that there may exist several conditions to create 
ultimate boundedness satisfying 0LV <�  with differ-
ent Lyapunov functions. In this paper, it can only be 
concluded that the condition in Eq. (42) leads to the 
ultimate boundedness based on the Lyapunov func-
tion in Eq. (43). 

 
Remark 5 
The ultimate boundedness of the tracking and 

weight errors can be made smaller by properly con-
trolling the parameters. The larger the Q , the smaller 
boundedness tends to result. Occasionally, the bound-

edness can be also small by choosing small k and 
s .  

Remark 6 
The selection of the feasible parameters is very im-

portant. Basically, ,k M  and L  should be specified 
based on the neural network property so that assump-
tion 2 holds. The sufficiently large Q  is recom-
mendable considering the degree of uncertainty, and 
then the parameter s  is selected satisfying the con-
straint in Eq. (42). 

 
Theorem. 2 Let assumption 1 and Eq. (42) hold 

true. It is also assumed that the variation of the mod-
eling uncertainty ( , ( ))x u x∆  is small enough. The 
adaptive control input of the error dynamics can be 
approximated such as 

ˆ( ) ( )[ ]u x x v r ρα β φ= + + −   (56) 

where φ̂  denotes the best estimate of the scalar neu-
ral network. The corresponding update rule is given 
by 

ˆ ˆT
ckE PB kφ φ= −�   (57) 

where k  is a scalar learning rate. Then, the tracking 
error and the scalar neural network error are ulti-
mately bounded. 

 
PROOF : Stability analysis is basically equivalent 

to that of Theorem 1. By controlling s , the update 
rules in Eq. (33) can be approximated into a simple 
form. That is, the input of the activation function ap-
proaches zero from Eq. (25) as 0s → . The activa-
tion function and its derivative will also be approxi-
mately constants. As the ideal weight matrices are 
generally unknown and possibly non-unique, the neu-
ral network may reach another ultimately converged 
ideal weight such as 

1 1,V V W W≤ ≤   (58) 

where 1 1,V W  represent another possibly maximum 
positive constants. 

Applying the activation function being close to a 
constant and the zero input, a new update rule is ob-
tained by 

ˆ ˆ(0)T
cW ME PB kMWσ≈ −�   (59) 

Updating V̂  is not necessary as it can be seen 
from Eq (33) with the approximation of 0s ≈ . Be-
cause the weights with the same initial values and 
gains can be approximated to a weighted scalar pa-
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rameter and the assumption of the small variation, the 
adaptive input can be approximated as 

ˆˆ (0)T
adv W σ φ≈ =   (60) 

The results in Eqs. (59)-(60) verify theorem 2. 
The approximated control law is derived from theo-

rem 1 for the adaptive control under high-level uncer-
tain nonlinearity. Theorem 2 provides a possibility for 
the uncertain nonlinear error to be eliminated by us-
ing the scalar neural network analogous to the general 
integral control. 
 

5. Simulation study 

To demonstrate the nonlinear control approach for 
uncertain nonlinear systems, a simple pendulum 
equation is considered here. 

1 2

2 1 2

1

sin
x x
x a x bx cu
y x

=
= − + +
=

�
�  

where ,a b  and c  are constants. The system has a 
relative degree of two in 2R  and represented in the 
normal form. It has no nontrivial zero dynamics so 
that the pendulum system has basically minimum 
phase characteristics and satisfies assumption 1. 

A reference signal r(t) and its derivative should be 
specified. For the system with a relative degree of two, 
the transfer function of the reference model is mod-
eled as a second-order linear time-invariant system 
represented by  

2

2 22
n

n ns s
ω
ζω ω+ +

 

where the positive damping ratio ζ  and the natural 
frequency ω  are judiciously chosen to shape the 
reference signal ( )r t  for a given command ( )tµ . 
The reference signal can be also generated on-line 
from the state model: 
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Fig. 2. Reference input histories. 

1 2
2 2

2 1 2

1

2 ( )n n n

y y

y y y t
r y

ω ζω ω µ
=

= − − +
=

�
�  

Therefore, if ( )tµ  is a piecewise continuous func-
tion of time, ( ), ( )r t r t� and ( )r t��  are available on-line. 
Fig. 2 shows the reference signal trajectory with 

2nω =  and 0.9ζ = , respectively. 
From the following definition 

1

2

x r
E

x r
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦�
 

the tracking error dynamics satisfy 

1 2

2 1 2

1

sin
e e
e a x bx cu r
y x

=
= − + + −
=

�
� ��  

The state feedback control from Eq. (13) yields 

[ ]1 2 1 1 2 2
1 sinu a x bx r k e k e
c

= − + − −��  

where 1 2[ , ]TK k k=  is designed to assign the eigen-
values of c cA B K−  at the desired location in the 
left-half complex plane. 

However, if the system is unknown, thus at most 
the estimated system only is available, then the best 
estimated system function may replace the original 
system in the state feedback control law. 

Eq. (41) such that 

1 2 1 1 2 2
1 sin adu a x bx r k e k e v
c
⎡ ⎤= − + − − −⎣ ⎦��  

where ,a b  and c  are the best estimates of ,a b  
and c , respectively. For the simulation, 10a b= =  
and 1c =  are assumed for the nominal system while 

7, 1.4a b= =  and 6c =  for the best estimated sys-
tem. Feedback gains are set to be 1 5k = and 2 1k = . 
The architecture of the neural network consists of five 
hidden neurons and the following sigmoid function as 
the activation function is adopted: 

1( )
1 zz

e
ϑ −=

+
 

Learning rate matrices were set to 0.1 ,L I=  
M I= and 0.1k = , respectively. To satisfy the con-
dition in Eq. (42), the input scaling parameter is set to 

0.5s =  with enough margin. The initial INNN 
weights are set to zeros. 

Fig. 3 shows the tracking performance and control 
history without the INNN strategy. The solid curve is  
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(a) Tracking history between exactly known case and uncer-
tainty added case 

0 10 20 30 40 50

-3

-2

-1

0

1

2

3

0 10 20 30 40 50

-3

-2

-1

0

1

2

3

co
nt

ro
l i

np
ut

s

time (sec)  

(b) Control input history corresponding to the control laws 

Fig. 3. Tracking performance without INNN augmentation. 
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Fig. 4. Tracking performance with INNN augmentation. 
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Fig. 5. INNN weights update history. 

 
the output of the system in the nominal case. As one 
can see, the tracking is achieved for all 0t ≥  asymp-
totically. The dotted curve also denotes the output 
signal when the model parameter is perturbed and the 
modeling error is added. Oscillation is introduced due 
to the model uncertainty. Fig. 4 presents the simula-
tion results achieved with the INNN augmented. The 
system tracks the reference inputs with a small error 
bound without oscillation. The oscillation induced to 
the uncertain terms is eliminated. The response by the 
INNN could be demonstrated in the control history. 
Fig. 5 presents the time history of the INNN weights. 
As one can see, V is very small, and this implies that 
the small values of V�  derived from Eq. (55) could 
make the small boundedness of the tracking error. 
The performance of the on-line scalar neural network 
is shown in Fig. 6. The scalar neural network can also 
control the uncertain system with a small bounded 
tracking error. 

Finally, the first result in Fig.7 shows a relationship 
between the number of neurons and the system with 
high uncertainty. The solid curve represents the out-
put for the case of a large number of neurons (30 
neurons). On the contrary, the dotted curve denotes 
the output for the case of a small number of neurons  



1082  H. Leeghim et al. / Journal of Mechanical Science and Technology 22 (2008) 1073~1083 
 

0 10 20 30 40 50

-4

-3

-2

-1

0

1

2

3

Tr
ac

ki
ng

time (sec)

 Reference signal
 With SNN

 
(a) Tracking history under an uncertainly added case 
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Fig. 6. Tracking performance with scalar neural network 
augmentation. 
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Fig. 7. System performance in accordance with parameter 
variation. 

 
(10 neurons). From the simulation results, one can 
easily understand that an appropriate number of neu-

rons are required for highly uncertain systems in or-
der to satisfy assumption 2. The solid curve in the 
second figure shows a case: the condition in Eq. (42) 
is satisfied with 0.5s = . The diverging dotted curve 
at 30 sec shows a case of the violation with 50s = . 
 
6. Conclusion  

In this paper, a new adaptive control approach for 
uncertain systems is proposed using input normalized 
neural network technique. The input bound assump-
tion, which is widely used in many studies but may be 
unnecessary, is avoided in this study by relying on the 
input normalized neural network. With a simple con-
dition, the ultimate boundedness of the tracking error 
regardless of the reference signals is verified through 
the Lyapunov stability theory. A new scalar update 
law is derived by simplifying the neural network un-
der the assumption that the uncertain system is sub-
ject to sufficiently small error variation. It naturally 
leads to a possibility that the small uncertain error 
could be eliminated by the scalar neural network. 
Finally, the proposed control law performance was 
successfully validated through nonlinear simulations  
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